
课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
大数据技术随着互联网的不断发展而被众多企业所应用,而今天我们就一起来了解一下,大数据技术中hadoop运行原理。
1)HDFS自动保存多个副本,移动计算。缺点是小文件存取占用namenode内存,写入只支持追加,不能随机修改。
它存储的逻辑空间称为block,文件的权限类似linux。整体架构分三种节点,NN,SNN,DN
NN负责读写操作保存metadata(OwnershipPermissionblockinfo)
SNN负责辅助NN合并fsimage和edits,减少nn启动时间
DN负责存数据,每个数据(文件)分割成若干block,每个block默认3个副本。启动后像NN发送心跳保持联系
NN保存的metadata在hdfs启动后加载到计算机内存,除block位置信息的metadata保存在OS文件系统中的fsimage文件中,对metadata的操作日志保存在OS文件系统中的edits文件中。block位置信息是hdfs启动后由DN上报NN再加载到内存的。
HDFS的安全模式:直到NN完全加载完metadata之前的这段时间。期间不能写入文件,DN检查各个block完整性,并修复。
2)MapReduce
离线计算框架,过程分为splitmapshufflereduce四个过程
架构节点有:JobtrackerTaskTracker
Split将文件分割,传输到mapper,mapper接收KV形式的数据,经过处理,再传到shuffle过程。
Shuffle先进行HashPartition或者自定义的partition,会有数据倾斜和reduce的负载均衡问题;再进行排序,默认按字典排序;为减少mapper输出数据,再根据key进行合并,相同key的数据value会被合并;后分组形成(key,value{})形式的数据,输出到下一阶段
Reduce输入的数据就变成了,key+迭代器形式的数据,再进行处理。
希望这辈子,最让你无悔的事情就是来达内学习!学习向来不是件易事,但无论过程多么艰难,希望你依然热爱生活,热爱学习!永远记得,达内将与你一同前行!现在扫码,立即领取万元课程礼包,助力0基础快速入行,为你梳理行业必备技能,全方位了解岗位发展前景!
【免责声明】:本内容转载于网络,转载目的在于传递信息。文章内容为作者个人意见,本平台对文中陈述、观点保持中立,不对所包含内容的准确性、可靠性与完整性提供形式地保证。请读者仅作参考。更多内容请在707945861群中学习了解。欢迎关注“达内在线”参与分销,赚更多好礼。